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ABSTRACT

We compare two finite difference schemes which have been used for numerical weather
prediction. One is based on the scheme of A. Kasahara and W. Washington, and the
second on the scheme of Y. Kurihara. We compare these schemes by applying them io
the shallow water equations on a hemisphere. Qur conclusion is that the Kurihara
scheme is more accurate provided the uniform mesh spacing suggested by Kurihara
is not used. The Kurihara scheme requires twice as much time and storage for the saime
mesh spacing. The Kurihara scheme is much less prone (o nonlinear instability

1. INTRODUCTION

The purpose of this work is the comparison of two finite difference schemes which
have been used in numerical models of the atmosphere based on the primitive
equations. The first is a “leapfrog’ scheme based on a staggered mesh which has
been used by Kasahara and Washington [4]. The second is a scheme due tc
Kurihara which is derived from the integral form of the hydrodynamic equations
[i]. The best way to test these schemes is to apply both to the same model of the
atmosphere. but this is an unreasonable programming effort. Therefore, we adept
the same simplification as Phillips and Kurihara; which is the application of these
schemes to the shallow water equations on a hemisphere instead of the primitivs
equations {2, 3]. This report is written so that most of the conclusions shouid be
understoed upon reading only Section 1 {Introduction). In Section 4 we give 2
more detailed description of the difference schemes.

The shallow water equations are
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where u, v, ¢ have been rendered dimensionless by use of the quantities Uy and ¢, .
The constants are defined by

G, = ‘PO/UOZ, Cr = 29"/(]0 P Cy; = ajal,, Cio = €,Cy4

where £2 is the angular velocity of the earth and g is its radius. The diffusion terms
(i.e., C;V¥qu)) are of course not part of the shallow water equations. These terms
are added to eliminate nonlinear instability ([8], p.126). The diffusion coeflicient o
must be taken large enough to eliminate nonlinear instability (for the centered
scheme o > 4 x 10° m?¥/sec). The parameter ¢, allows the diffusion used for the
height field to differ from that used in the momentum equations.

The range in latitude is 0 < 8 < #/2 and we require the flow to be periodic in
A with period 7, thus 0 << A <C # is the range in longitude. We require symmetry at
6 = 0. In the programs we set u = ¢ = 0 and compute ¢ at the pole (¢ = #/2).
Actually « and ¢ are not defined at the pole.

In Section 4 we will describe the difference schemes as applied to the shallow water
equations. To simplify matters we will here describe the difference schemes as they
would be applied to the equation
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defined for rectangular coordinates. The centered scheme is defined on the staggered
mesh as shown in Fig. 1. The mesh points marked e carry values of « at the sth
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Fic. 1. Centered scheme mesh.
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time level, and the X points carry values at the (n — 1) time level. To find values on
the (7 - 1) time level we use the following finite difference version of Eg. {4},

2 2
w, L 2 Ar (“H—Lj _ ( i—1, ])

{u; ,,+1i

s 2 Ax

Note that «{;" is computed at the X points only.

The Kurihara scheme is based on the integral form of Eq. (4),

ZJV udx dvz = J.S 1u? d}z—f w? dy -+
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where the area £, and line segments S; are defined by Fig.
used a variable mesh spacing in the x-direction.) The box Z, with sides S; is ¢
about the mesh point P, . The integrals are approximated as follows:
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FrG. 2. Kuribara mesh.

where A4; are the lengths of the line segments indicated in Fig. 3 and ¥,
of the box. All the boxes are centered about the mesh point they contain.
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is the area

The Kurihara scheme is quasi-conservative. This is the reason for using the
above integral form of the equations. By quasi-conservative we mean that the systerm
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Fic. 3. Kurihara mesh.

of ordinary differential equations obtained by using only spatial difference operators
on the partial differential equations conserves energy (see Section 4).

The time derivative (8/8t)(f5, u dx dy) is approximated by (ug™ — ug™)/2 4t
and the line integrals on the right are centered at the nth time level. Thus two time
levels must be stored at each mesh point for the Kurihara scheme and only one
time level for the centered scheme. Also we need compute #"*! on half the mesh
for the centered scheme and the entire mesh for the Kurihara scheme. These are
important advantages for the centered scheme.

For both schemes there is trouble near the pole. If the same value of 4A is used
on all circles of constant latitude, then the mesh points are too close near the pole.
To avoid this we use fewer mesh points on the constant @ circles near the pole. In
the case where 46 = 5°, we may use 4, 8, 16, 26, 36 points for § = 85°, 80°, 75°,
70°, 65°, respectively. On all circles below 65° there are 36 points, thus 4A = 5°
on these circles. Thus we have an irregular mesh. The Kurihara scheme as described
above can handle an irregular mesh without modification (except at the pole point
itself). The centered scheme requires some interpolation where the mesh is irregular.
Using the centered scheme (see Fig. 4) we need the values at the point marked &
to compute a new value at P,. These are obtained by linear interpolation using
points P; and P . Both the Kurihara and centered schemes have only first-order
accuracy at points where the mesh is irregular, but they have second-order accuracy
where the mesh spacing is constant.

The differential equations conserve mass, that is M = [[ ¢ cos 8 df dA is inde-
pendent of time. The Kurihara difference scheme also is conservative, that is
g2 AX cos 8 sin(46/2) is independent of n (provided the value of ¢ at the pole
is computed properly). However, the centered scheme is not conservative because
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FiG. 4. Interpolation in centered miesh.

of the interpolation near the pole. The mass gain after eight days for the centered
scheme at 2.8° resolution (48 = 2.8°) is about .03 percent, which is probably not
serious. In other cases there was a small gain or loss in mass, also not serious.

2. REesuLTs

A more complete description of the results is given in NCAR Manuscript
No. 68-215 [S]. In order to reduce the number of figures, we have described scims
results without including the relevant figures. The results are given in Figs. 3-11.
The variables listed in these figures are defined in the Glossary.

The contour plots are the values of the v velocity (east-west velocity) at the
time (in days) indicated on the plot. The contour interval is 10 m/sec. The maximum
value of  is initially about 100 m/sec. The duration of the run (in days) is indicated
by the abscissa in the lower right-hand graph.

The available energy is defined by £, = E — E where

orl, 2 , gy -
E = H 3 (2 -+ t®yp cos 0 db dA - 508 ‘5 i w2 cos 8 d6 dA, (i
o q;OEP_.Z vy
E = TIE {15
G = gm’rgocosﬁdﬁd)\. iz

The quantities ¢, and U, are used to render the equations of motion dimensionless.
The kinetic energy is defined by [ (% + v?)g cos 8 df di. These energy variables.
normalized to maximum value one, are plotted in the lower right-hand corner.
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A. Effect of Resolution

In this section we will discuss the effect of resolution (i.e., mesh spacing) on the
results. It is difficult to isolate the effect of resolution from that caused by the diffu-
sion which is used to stabilize the difference scheme. The diffusion affects the flow
field, so we can only hold the diffusion constant and vary the resolution and the
difference scheme, then vary the diffusion at fixed resolution. We fixed the diffusion
at 4 x 10° m?/sec which is slightly above the minimum value which will stabilize
the centered scheme. An approximate solution derived by Haurwitz [7] is used for
the initial conditions. This is the same initial condition used by Phillips and Kuri-
hara [6, 2]. It is described in Section 4. Note that our fields extend over half the
hemisphere so that the flow corresponds to wave number 6.

Figs. 5 and 6 give results for the centered scheme. There is very little difference
for either the contour plots or the energy curves between JINT = 32 and 48, so
we do not include the result for the JINT = 48 case (see [5]). However, there is
some difference between 18, 24, and 32 (we do not show the JINT = 24 case here;

CENTERED SCHEME  JCASEw 16, 1 MESH SPACING AND DIFFUSION
JINTw{8 N[JTOT> 596 DELT= 600.0 1—~°D°ELX MaX=  ,09----D{FFUSN MAX« 1,00
MASS (MIN-MAX)=1.00127 TYPE=! ' 1
MNDFNs 1 DIFDFN= 4.00E+05 EPSDFN=( T
NST2« ¢ DIFST2= €. EPSST2=0 .
8 0 21 42 64 85

LAT[TUDE

] CASE= 16, 1 DAY 1,00E+00 5 CASE~ 16, 1 DAY« 2,00E+00
| S —— | —

<

QY EY

VARARRAE

% CASE= 16, ! DAY= 5,00E+00 U CASE= 16, f DAY« 5,00E+00
——— | er—————
e ——

OO s s &
R IS T

U CASE~ 16, 1 DAY~ B.00E+00 AVAILABLE AND KINETIC ENERGY

‘_‘OADVL ENG MAX= 1,00---KIN ENG MAX= 1,00
.75 0 3 "
TIME(DAYS] 6 §

Fi. 5. Centered scheme—35° mesh.
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CENTERED SCHEME  JCASE- 21, 1 MESH SPACING AND DIFFUSION
JINT*52  NIJTOT=4762 DELT= 300.0 T—ODOELX MbXs ,05----DIFFUSN MAX= 1.0}
MASS (MIN-MAX)=1,00028 TYPE=1 ’
NDFN= 1 DIFDFN= 4.00E+05 EPSDFNeD e A
NST2« & DIFST2= (. EPSST2e0
i 9 z 2 55 &7
"ELATITUDé i
Y CASE= 21, 1 DAY= 1.D0E+00 U CASEw 21, § DAY= 2.0QE+0¢
AVAUAL
WANRARNANGA
] CASE= 21, t DAY= %,00E+00 [ CASE= 21, 1 DAY+ B,00E+GO
3
y CASE= 21, 1 DAYs B.J0E+DD AVAILABLE AND KINETIC EMERGY
A ENG HAYX= 1.00~—KIN ENG MAX+ .04
- L d < -
} S e
i —
78 I -
] g
2 TIMELDAYS) 6 s

Fig. 6. Ceniered scheme-—2.3° mesh._

see [5]). There is some difference in the velocity of the flow as measured from the
movement of the flow pattern (see Table I). Note that there is no “double sye”
structure for JINT = 18, thus the accuracy is not as good in this case.

TABLE 1

WAVE VELOCITY—CENTERED SCHEME

A6 degree/48 hours m/sec
5¢ 42.5 27.8
3.75° 45.8 29.%
2.81° 456.9 30.6
1.88° 47.8 312
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The wave velocity is obtained by measuring the horizontal movement of the
high between ¢ = 0.0 and ¢ = 2.0 days. This high is the one centered at § = Q°,
A = 90° at time zero. The approximate value obtained from the Haurwitz solution
is 32.6 m/sec [6, 7]. The error in measurement from the contour plot is probably at
least 1.4° or 0.9 m/sec. In addition, we have truncation error due to the difference
scheme.

Figures 7-9 give the results for the Kurihara scheme. For Figs. 7 and 8 we used
approximately the same mesh spacing as for the centered scheme.

KURIHARA SCHEME  JCASE=508, 2 MESH SPACING AND DIFFUSION
JHAX=28  NIJTOTx 595 DELT+ 600.0 T—DDELK MAX= .05----DIFFUSN MAX~ .00
MASS [MIN-MAX) 1,000 -0
DIFDFN= 4.00E¢05 EPSDFN={ . ya
T 44 64 85
- LATITUDE
U CASE=508, 2 DAY= 1,00E+00 u CASE=508, 2 DAY= 2.00E+00
U CASE=508, 2 DAY~ 3,Q0E+00 v CASE=508, 2 DAY= 5,00E+00
A EIG
A___/\\.___/‘
mmm OSSOV
U CASE=508, 2 DAY= -8,00£+00 AVAILABLE AND KINETIC ENERGY
TAVL ENG MAX~ 1,30 K IN ENG MaX= .00
™
]
0y 8

2 4
TIME(DAYS)

Fic. 7. Kurihara scheme—35° mesh.

For Fig. 9 we used the same mesh as Kurihara, namely we dropped two mesh
points per latitude circle (four points on a 360° mesh). This has the effect of
increasing the mesh spacing (4x) toward the pole (note the upper right-hand graph
in Fig. 9). The results are clearly poor for this mesh. Also, the saving in computation
time for this mesh is probably not very large. The total number of points for these
two meshes have the ratio 1761 : 1121. However, the Kurihara scheme for variable
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KURIHARA SCHEME  JCASE=503, ¢ MESH SPACING AMD DIFFUSION
JMAReS4  NIJTOT=1761 DELT= 300.0 70DQELX Ma¥=  L05----DIFTUSN MAX= £.00
MASS (MIN-HAX)=1.0000 " | —
DIFDFN. 4.00E+05 EPSDFH0 e A
~t"
]
. i i
5 2 3 64 85
LATITUDE
J CASE=505, f DAY= 1,00E+00 u CASES5(3, 1 DAY= 2.008+0%
H
U CASE-503, 1 DAY= 3.00E+00 v CASE=503, 1 DAY= 5.00E+00
| 1
u CASES505, 1 DAY* §.00E+00 AVAILABLE AND KINETIC ENERGY
—AVL ENG MAX= 1,00 KIN ENG MAY= .00
1.0 \ -
<> <= = N L l
|
I e
J P :
= L I
0 2 n P
TEDeS O $

Frc. 8. Kurihara scheme—2.8° mesh

A4 is much more complex than it is for constant 4A which reduces the difference w
computing time. The superior accuracy in Fig. 8 relative to Fig. 9 probably depends
on the flow fields having relatively little variation near the pole. This might not be
true in a2 numerical model of the atmosphere.
The Kurihara scheme seems to be more accurate than the centered scheme. The
Kurihara scheme at 5° seems to be slightly better than the centered scheme at 3.75°
ut not as good as the centered scheme at 2.81°.

B. Effect of Dissipation

In one case we varied the diffusion coefficient with latitude, that is, a relative
variation from 1.0 at the equator to 3.75 at the pole was used. We noticed very
little difference between this case and one in which the diffusion was heid constant
(relative value 1.0) from equator to pole.
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KURITHARA SCHEME  JCASE506, 1 MESH SPACING AND DIFFUSION
JMAXe84  NIJTOT=1121 DELT= 300.0 ‘—Q%ELX MAXs ,08-- DIFFUSN MAX= 1,08

MASS (MIN-MAXI®1.0000 P — 1
DIFDFN~ 4,00E+05 EPSDFN«( 1

. T
1 8

23 A4 65
LATITUDE

v CASE=505, ! DAY= {,(0Ex0D ] CASE=B06, ¢ DAY= 2,008+00
A

DADND)

/

U CASE«506, 1 DAY= 3.00E+00 U CASE=506, ' DAY= 5,00E+00

1] CASESS06, 1 DAY= 8.00E+00 AVAILABLE AND KINETIC ENERGY
A ENG MAXe 1,00 -~-KIN ENG MaXs 1,00
ST .
= S RS
Ty 2 ¢4 [ 8
T1ME (DAYS)

Fig. 9. Kurihara scheme—uniform mesh.

In another case a diffusion coefficient of 2 x 10° m?/sec was used with the cen-
tered scheme. This was not sufficient to stabilize the scheme, since the compuiation
started to explode around the seventh day. However, the qualitative pattern of the
u field is the same as in Fig. 6 (where ¢ = 4 x 10° m?*/sec) at the fifth day. A
diffusion coefficient of § x 10° m2/sec was also used. Again the qualitative pattern
did not change, only the intensity of the field differed with o.

In another case a slightly different type of diffusion term was used. This diffusion
term is derived from the first step of the two-step Lax-Wendroff difference scheme.
Consider the simple equation #, = u,, . The first step of the two-step Lax-Wendroff
scheme is

i3 3
ntl __ Ui + Uiy

dt 5 n
U; 2 + 2 Ax (u:f-}-l - u}'—-l) (13)
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This can be written as

n n n+1 n—1 {
1 SR 1 ,1,1 Lo Uiy oMy — U — iU, iR ‘/J[——EIH-E . )
5t - ; R 2 5 Ay ot LSRNy
which becomes
— 2 At — BESY (71
=7+ 2 Adx (Wl — i) + (W by — ™ = u O

This is the same as adding a DuFori-Frankl type of diffusior [8] with a diffusion
coeflicient o such that dro/Ax? = } which is the maximum allowed by the stabi%éiy
condition for the lagged scheme. In our case of spherical ccordinates there is a
slight difference between the term derived from the two-step Lax—Wendroff sc
and the DuFort-Frankl term because of a variation with & (see Section 4). 1
case we used a Lax—-Wendroff type of diffusion with ¢ = 4 x 10° m®'sec.
was littie difference between this case and the DuFort-Franki case.

For Fig. 10 we used a diffusion term of two-step Lax-Wendroff rypz wix

-
i
There

CENTEPED SIHEME  JOASE= 25, 1 MESH SPACING AND DIFFUSIGH
CINT=¢8 MIJTJT= 595 DELT= 600.0 rg:)QEL)’. MAX= . 09----DIFFUSN Mak= 103
FASS (MIN-MAX)=1.00047 TVPE<1 : T !
NDF'e 0 DIFDFN= 0. EPSDFMG : s
NSTZ= 23 DIFST2« §.G0E+20 EPSST2<0 ]
o
—
0 . i 4
0 21 g 5 8
LAT(TUBE? & s
u CASE= 25, 1 DAY= 1.00E+00 y CASE= 25, ¢ DAY= 2.00E+60

W ———~
BVYAVAN VRN
\f\mﬁf\(ﬁ AEYTAIEA

)
CASE= 25, 1 DAYe 3,00E+(0 Y CASE= 25. 1 DiY= 5.00E+00

AN\
AYAAAYA | DN

y CASE= 25, 1 DAY= 8,00E+00 AVAILABLE AND KINETIC ENERGY
P ENG MAXs 1.00---KIN ENG MAX= €.30
- i, [
o —— — JF__ .
T i
R 2 —FPEBAYG
L ] 2 4 § 8

Fig. 10. Centered scheme using dissipative step everv 4 hours.
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o At/dx? = [ (the large value of DIFST 2 insures the latter). However, NST 2 =
23, which means that the Lax-Wendroff type diffusion is applied only once every
23 time steps, that is once every 3.83 hours in atmospheric time. Also, we used a
5% mesh so that Fig. 10 should be compared with Fig. 5. We include this case to
show that this “two-step” type of scheme can be highly dissipative.

Next, in Fig. 11, we consider the Kurihara scheme with a reduced diffusion
coefficient, o = 1 x 105 m2/sec. This should be compared with Fig. 8 where
o = 4 x 10°m?sec. The fields in Fig. 11 have the same pattern as in Fig. 8, but

KURIHARL SCHEME  JCASE<B10, 1 MESH SPACING AND DIFFUSION
JMAX=34 MN[JTOT=176% DELT= 300.0 ;—-ODQELI‘ MAX= ., 05----DIFFUSN MAX= 4.080
MASS (MIN-MAX)=1.0008 )
DIFDFN= 1.00E+05 EPSDFN=0 s
e e
0 1 23 44 66 L B7
LATITUDE
U CASE=540, 1 DAY= 1.00E+00 U CASE=510, 1 DAY= 2 Q0E+00
v CASE=S10, t DAY= 3.00E+00 U CASE=510, 1 DAY=-5_Q0E+00

AVAILABLE AND KIHETIC ENERSY

P ENG MAX= 1.00-—KIN ENG MAX= 1.02
P i &
}_. —
T P
L | 1
.75 L |
0 2 q 8
TIME (DAYS)

Fic. 11. Kurihara scheme—low dissipation.

they are more intense and also are not as smooth. Note that the kinetic energy is not
a monotone decreasing function in this case. This case was run out to 32 days to
check for instability. It was stable. The kinetic energy dropped to .85 at 32 days.
With ¢ = 0.0 nonlinear instability develops at about 18 days with the Kurihara
scheme.
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In all the above cases the Coriolis term was approximated by an implicit {or
time averaged) difference form, that is 1" + ¢77%) /. In one case we used a space
averaged scheme, that is Mol ; + o7y ; + o7, + &7 ;1) f There seemed to be
no essential difference.
in one case we set TYPE = 2, that is we changed the mangner in which the mesh
is handled near the poles (see the Glossary). This was compared with the resulis
of Fig. 6, and there was no difference. The fact that there was no difference may be
due to the nature of the test case—there is little variation near the pole.

3. CONCLUSIONS

The main conclusions can be listed as follows:

A. The Kurihara scheme is more accurate than the centered scheme for a
given 4¢. However, note that the Kurihara scheme requires twice as much storage
and twice the computer time for the same value of 40. Thus the Kurihara scheme
at 40 should be compared with the centered scheme at approximately 46/+/72.

For the centered scheme at wave number 6 we noticed little difference in accuracy

out to five days between a resolution of 2.8° (32 points pole to equator} and 1.9°

BT T g LT T L T TV P PRV N

truncation error must be compared with other effects, such as eddy diffusion.
vertical resolution, mountains, oceans, the importance of higher harronics, stc.
Thus it is difficult to draw any firm conclusions from an experiment using the
shallow water equations. We only obtain an indication.

B. Kurihara used a “uniform mesh spacing™ in which the number of points
on a latitude circle was decreased uniformly going from the equator to the pole;
that is, each circle contained two fewer points than the one below it. Thus for
48 = 10°, we would have 18, 16, 14,..., 2, 1 points for & = 0°, 10°, 20°...., 807, 90°.
This “uniform mesh scheme,” for 46 = 2.8°, produced far less accurate resuizs
than one in which 4A was taken equal to 46 until the # =~ 65° circle was reached.
Above § ~ 65° the value of 4\ was increased to avoid spacing the mesh points (oo
closely.

C. The Kurihara scheme required less dissipation to eliminate nonlinear
instability than did the centered scheme (o << 1 > 10° m2/sec versus ¢ = 4 x {7
for the centered scheme). However, the numerical models based on the prém;,m'e
equations may require greater eddy diffusion for reasons that do not appzar with
the shallow water equations. Therefore we are not sure of the significance of this
difference
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D. We tried three different types of linear diffusion terms and found little
difference between them on an eight-day run. We did not try a nonlinear type of
diffusion which might be more interesting,

E. We also tried two different ways of treating the Coriolis term for the
centered scheme, a space average versus a time average (see Section 2). We found
little difference on an eight-day run.

4. APPENDIX

A. Some Integral Invariants for the Shallow Water Equations

The shallow water equations on a sphere are given in Section 1 (8 is latitude, A is
longitude, # = 0 at the equator). Consider a rectangle R: 6, < 86 < 4,,
A < A < A, Let X denote the kinetic energy and P the potential energy (remember
that we are using dimensionless variables), that is

— % I fR G2 + %) cos 8 db dA (15)
P_fzifj ¢ cos 0 df d) (16)
=2 (17)
Then
—C,Lff (cols() —U—I\——i—l “0 )cosﬂd@d/\
4 Jf (uF, 4 vF,) cos 8 df d\ (18)
and
Gl For oGt e g
e J vg? zd,\ 1, f J oF, cos 6 df d) (19)
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where
F, = CV¥ug)
F, = C;N(ve)
F, = C;, V3¢
Thus

Z = — j (Crueg® + Jugie? - %)) df

— 1 (Covg? + drglu® + v¥) cos 3;) ”{’4
+ J( ’ (uF, + thy + oF.ycos 8 45 d4 20
* R

We assume that the boundary conditions require u# 2ad ¢ to vanish at the pele:

and # to be symmetric and v skew symmetric at the equator. We consider
)

R

energy balmce for the northern hemisphere. that is A; = 0. A, = 2, 8. = 0,
8, = #/2. Alsc assume Fy = F, = F, = 0. Then

8K+ P)

—— == i, L

¢t

We can also show conservation of mass and angular momentum over the hemi-
sphere, that is

S [ pcosedoan=o (223

[ (u - 3C; cos B)q cos B2 dB dX = . (23}

F\J‘Qx

The nttial values are the same as those used by Phillips and Kurihara {6, 2.
The initial values of the velocity field are obtained from the following stream
unction

b = —g’w sin 0 -+ g?K cos® §sin 8 cos RA,
The height fieid is given by

g = @, + a2A(0) + a*B(8) cos RA - aC(f) cos 2RA
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where

A(B) = 30(2Q + w)e? + IKEE(R + 1) + QR — R — 2) — 2R,

AR + Wk
(R+ I}R+2)

C0) = 1K2R{(R -+ 1)c? — (R -+ 2)),

B(6) = CR[(R® + 2R +2) — (R + 1) ¢2],

¢ = cos 0.

The values of the constants that were used are
w=K=178Xx 10%sec?,
= 6,
@p = 7.84 x 10 m?/sec?,
a = 6.37 X 10 m,
0 = 729 x 10-5 sec™.

Haurwitz has shown that in a nondivergent barotropic atmosphere this solution
will move with angular velocity »[7, 6].

R(3 + Rw — 20
I+ RM2+ B

B. The Centered Scheme

The mesh for this scheme is laid out as follows. We define 8, = (k — 2) 48
where 1 < k << Kand 46 = #/2(K — 2). The value of K — 2 is denoted by JINT
in the upper left-hand corner of output plots. On ecach latitude circle we place J(k)
equally spaced mesh points. The coordinates of these points are thus (A;, 0,)
where A; = (j — 1) 4A,,, 4A, = w/J(k). The integer J(k) is an input parameter.
We require J(k) to be even and non-increasing as a function of k; also we require
J(K) = 2. Note that the domain over which we are integrating the equations is
0 <0 <72, 0<A< 7 The boundary conditions require u(A -+ 7, 0,¢) =
u(A, 8, ) and similarly for v and . At the pole = 7/2 we require u = v = 0.
We require u and ¢ to be symmetric about § = 0 and v to be skew symmetric.

The mesh is staggered in space and time. We use the notation u;,, = u(A; , 0, 1,)
where ¢, = n 4dr. The variables u, v. and ¢ are known for even values of the time
level n at the mesh points (j, k) = (0, 2), (2, 2), (4, 2),..., (1, 3), (3, 3),..., (0, 4),
(2, 4),... . That is, the mesh appears as shown in Fig. 12 where the points marked
X carry values at even time levels and points marked e carry points at the odd time
levels.
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8=_;.r_ K= X @ IJ(67=2
® X ® b o(8y=a
|
T ® X e ® & | Jia-6
' x e X @ x lo@-s
| |
&=0 >!< ® b ¢ ® ¥ ® | J(2i=6
| i
{
Kol @ X @ —Yom e — —X (|} =6
A=0 =7

Fic. 12. Centered scheme mesh.

We will use an operator notation to describe the finite difference equations.
Given a function g; ,, defined over the mesh {(&;, 4,) we let

81 — i1k (.03

e S (e {24)
£5 = Bixd 2 ) :

(298 — N
Sk k=1 e
gé:gjké:_"’l_ji___g___.’ (25)
" 248
G T &ax T Eirn T i1 (963

84 = Bjna = 4

Some additional explanation is required because of irregularities in the mesh.
If j=1, then

o oo B2, Bok 37
Sk, ZAA ° R

But g, is not defined since j = 0 is cutside the mesh. Here we use the boundary
condition which requires that all the variables be periodic in A with period =
Thus go. = g, where J = J(k) represents the right-hand mesh point cn the
latitude circle 8 = 8,,. Note that this requires J{k) to be an even number ir order
that g, . and gy, be on the same time level. Thus

o B &1
b 2 4)

.
Ny
29

581/4/3-2
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g = SuE Bk (29)

24X

In some cases g4 is not defined because of the variation in J(k). For example,
consider the mesh shown in Fig. 13. For the point P = ();, 6,) we have

= Bie1 T Sik1
85,16 > A0 (30)

where j =3, k = 2.

Since the point (A;, 8;.,) is not correctly positioned above (A;, 8,) we must
replace g; ;. by an interpolated value. We used linear interpolation; that is.
relative to Fig. 13 with j = 3 and k = 2,

832 = 813+ (1 — &) gs3 (3D
Ads d P,
I_—"‘k‘_‘l-"_J
k=3 °
J=l =2 | J=3
| . P
k=2 @ X ‘o" x °
|
k=1 X ® X ° X
J= | 2 3 4 5

FiG. 13. Centered scheme interpolation.

where
= @
(Note that d < 0 in the case shown.)

Thus we are able to handle the variation of the mesh near the pole. If we did not
increase AM(k) near the pole, then the Courant-Friedrichs-Lewy [8] stability
criterion would require a small value of 4z since the stability criterion is governed
by the ratio A¢/4X cos 6.

A second method to handle the mesh variation near the pole was also tested.
For this method J(k) = J(1) if k << K and J(K) == 2; that is dA(k) = 4X(1) for all
latitude circles below the pole. We choose J(1) so that A\ = 46. We then modify
the spatial operator g; . We define a function Ay(k) such that Ay(k) = A48 below a
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certain latitnde (say 62°) and Ay(k) cos 8, is constant above that latimde We let x]
denote the largest integer which is less than or equal to x {x = 0). Let m, =
[dy(k)!48). Then my, > 1. Let

A — my 48

(33;
486 T
and let

g;rk = Ofjbm+1,k -+ {1~ x) Eivmy,i :“L:
g;k = ‘xgj—m,‘.—lgk + {I - 9‘} iy s ER:

(that is, use linear interpolation to define g;°, ). Now define
€ s = S — &in e
Sik — T A 4 i v

i.k,A 2 A’y(l\')

The value of the parameter TYPE is printed in the upper left corner of the outpur,
If TYPE = 2, then we have used the latter definition of g5 . If TYPE = 1. then

we have used linear interpolation to define g; as given in Eq. (32).

We are now prepared to define the centered difference scheme. We let
gt = gl&;, 8., 8)and D, , D, , D, denote the finite difference forms of the diffus-
ston terms which we will define later. The parameter ¢, was in all cases zero except
one for which ¢, = [.

Hi +L n—1 n—1

i @i = U1 Qi cos 5 [(un) ¢ ]J k4
24t i!'u’i_u e i.i .«i_/.EfC;, e iﬁ
=L "FY cos 0, w7 P i Yik U Yk ¥ins
+ efl’;z,k‘,A(P;l,k,Ag + DE( s 537\,
:Hl +L . kh—1 _n—1 1 o i
= U — U "
9"/ ik Pik cos B, [ 2 H
2 4 2 4eC,
— =" g"cos 8}, s — ——0— H™)?]; g
cos 9 [( ) (P L.A,ﬁ 3 Cos 3{ He ) ]J,A,E
7 ‘g; 1
o R, A £ 1 -+ n —1_n-1
— 2 At sin 6, (cos 2. -+ C,}?— 3 (e Tl
+ sfu;f‘,k.Aqo?,k,Ai +D,, (38)
_ ” 2 sy
e = el — po 8 {lwre*]; o1 + o cos 9], .41 + D, . {39}
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To solve these equations we first determine ¢}1', then the products u!}*¢"t*

"+1 211 and finally w271, g7+ ik Pk
¥ $rp and fnally u; .-, 5 5

The boundary conditions are used to obtain uji' = w3, @Fi' = @i, and

oitt = — o}l We use the difference scheme to compute values for 1 < k < K.
For k= K (the north pole) we use u}f' = i = 0. The value ¢}% is obtained by

averaging the values of ¢ %', on the first circle below the pole,

17(k-1)

Pk = 3 Pl JK—=1) (40)

We will next treat the diffusion terms. We will first describe the DuFort-Frankl
finite difference approximation for the Laplacian operator

1 &% 1 &y

% °g
Ve = cost § ox2 cos 8 o (COS o ) (41)

The term D, in the difference scheme above is an approximation for 2 4:C;V*(¢u)
where C; = o/aU, is the dimensionless diffusion coefficient. The approximation
for V2 is

9 1 ] n 7+l n—1
Ve o~ AN cost O, Wi & Uy — i — Uiy
k
. 1 (cos 8.4 + cos 91( . Wy
Aeg cos 9" 4 ~Hi 1 T Y4k ik
__cos 0 + cos b 4 s \
4 @t uiy! 214?,1\1—1))- (42)

The term D, is 2 41C;V¥gv) and D, is 2 4tC;V3g.

If we set Du = D, = D, = 0 and ¢; = | in the difference scheme for u, v, ¢;
replace the u}'7', v7 7" and 0"“1 terms by the averages u} , 4, U 14> ¥5.0,4> and then
replace 2 At by dt, we obtam a finite difference scheme which is usually dissipative.
This is the first step of the two-step Lax-Wendroff scheme. Another way to obtain
this scheme is to set ¢, = 1, use a centered difference approximation for the time
derivative and the following formula for D,

v = 2 AtCyV3¥(pu) 43)

Viy = 0z 02 (Ui T Uian T Ui + Wi — 253t — 255 (44)

and similarly for D, and D, .
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The result of applying this form of the diffusion term every 23 time steps s
shown in Fig. 10. This produces a rather heavy dissipation as one might expeci. In
these runs we have ¢, = 0, but we stiii have the essence of the two-step Lax-
Wendroff diffusion.

The parameter NST2 (whose value is shown on the upper left corner of the
output) gives the frequency at which the two-step Lax~Wendroff type of diffusion
is applied. The value of ¢ (units are m?/sec) is denoted by DIFST2. If NST2 = 23,
then D, = D, = D, = 0, except every 23rd time step when the diffusion terms
are as given above. If NST2 = 0, then D, = D, = D, = 0 for all time steps.
The value of D, is Cp, V3@ where Cy, = €,C; and ¢, is denoted by EPSSTZ. The
values NDFN, DIFDFN, EPSDFN are similarly defined except the DuFort-Frank:
type of diffusion is used.

C. The Kurihara Scheme

The mesh for this scheme is as shown in Fig. 14. We define 6, = (k — 1.3) 4¢
I <k <K where 40 = (7/2)/(K — [.5). On each latitude circle we place J(k)
equally spaced mesh points. The coordinates of these points are thus (A; . £} where
A= (j— D AA dX = 7 [J(k), 1 < j < J(k).

»

@
rold

o

]
° . » » | v(5i=4
i
| |
® ) ° ® ® ® iJM;:e
L] ® [ ® @ @ fd(3)=5
i
k=2 ® ® ° ® & ® | J(2)=6
9=o[ |
ko= [ ® ® e [ L] J{ti=s6

Fic. 14. Kurihara scheme mesh,

We have the same periodic boundary conditions in A as for the centered schems.
The boundary conditions at pole and equator are alsc the same; namely. u = ¢ = 0
at the pole, # and ¢ symmetric in 0, and » skew symmetric about § = 0. Again
J{k) is an input parameter. It is a non-increasing function of k. We require J(K) = 1.
For reasons of program efficiency we require 1J(k) << J(k + 1) < J{k) and
J(1y = J(2). The mesh structure is shown in Fig. 14.
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To derive the equations of motion we integrate the equations of motion over the
“box’’ shown in Fig. 15. The mesh points are each contained in a rectangle centered
about the mesh point. The points whose boxes border on the box about P, (the
point at (A, , #;)) are indicated by P,, . In the case shown 1 << m < 6. We may have
the maximum value of m between 4 and 7. (We assume J(k + 1) = {5(k).) We
denote the index set for the neighbors of P, by L, thatis L = {1, 2, 3, 4, 5, 6} in
this case. In the case shown in Fig. 16, L = {1, 2, 3, 4}. In the case shown in Fig. 17,
L={1,2345>5:, 6}

k+1
P P
\o 3 o ?° ™

k
R P P
\.4 o o o

Fic. 15. Mesh point numbering—variable mesh spacing.

P2
[ ] .
Py @ ® Py ® P
° . ™
Pa

Fig. 16. Mesh point numbering—constant mesh spacing.

. l .
. P3 o of °
. . ° ° © ®

Pq Ps Pg

FiG. 17. Mesh point numbering—variable mesh spacing.
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We denote the index set for the East-West neighbors by Lew and that for the
North-South bv LNS Thus Legw = {1, 4}; {1, 3}; {1, 3} in Figs. 15; 16; 17, and
Lns = {2,3,5,6};{2,4}; {2, 4, 5, 6}. The area of the rectangle about Py is 44, =
2 sin(46;2) cos 9,: 4AX,, . We denote the length of the segment coramon to the rec-
tangles about Py and P, by S,, and w,, = §,,/44, . Thus ia Fig. 15

S'?. = dAkCOS {H;l T

A
ot

Sy = —4dX, cos (6; —

2 "

We take w,, to be negative for the West and South sides. Using the above notation
we may approximate integrals over a rectangle as given below.

2

i rr z/l Rtdare ¢ i il‘l )
— i —-dAdf = — i ¢ {46)
44 JA dA d _/JA d |A;—A\" L‘ 2 ) @i » (6)

8y+486/2
dh ~ i)

Here i, denotes the value of ¢ at the mesh point P, .
Given functions ¢, £ defined on the mesh and the solution u, v, o of the difference
scheme we define four operators as follows:

D(l!:l) — Z ( Uy~ Ug )( Pm T %_‘}( ng = iri}ﬁ ; w,

Lew 2 2 ! 2
Up, + Uy \f Pm T @o 3/ 'ﬁm - 4’, \ .
+ X (,_ 2 : )( 2 ol 3 . | @, (483
Ins =
' lbvn m ' )
GAdE) = ¥ (_j_;ﬁo_fi;w 91
Lew “ ’
Go®) = ¥ (i_g_é_t.‘/ﬁ — Yoy) @ - £50)
Lys - ’

The above definition of G, is somewhat different from that given by Kurikara {1},
We use this form in order to achieve “quasi-conservation™ of energy.

Next we give the difference equations, except we only difference the spatial deriv-
atives. Thus we are considering mesh functions #;,{r) = ¥(},, 8, , ¢} instead of
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% = ¥{(X;, 0., 1,). This permits us to derive certain ‘“‘quasi-conservative”
relations. The spatial difference scheme is

N @i , ; .
_(%I‘;JQ = —D(u;;) — C,Gi\(% (Pyz'k) + ity + fr) b + Fy (51)

3 H ‘Uj .
_g%‘k)‘ = —D(vj;) — ChGe(%‘P?k — (s + fo) wppn + F (52)

o

d@jp

. — —p() +F,, (53)
where my, = tan 0, and f;, = C;sin 8, . This scheme is an approximation of the
integral over a box of the right side of the differential equations,

The boundary conditions are u; ; = u; 5, ®;1 = @49, Uj1 = —U; 4 at the lower
boundary. At the pole we have uy ; = vy, = 0. The equation for ¢, ;. (the pole
value) is )

“ELE — —D(1) + F,. (54)

Note that ¢, ; has neighbors only to the South so that the operator D(1) is

’Un—,” & ( Spm_’—(pﬂ
—D(1) = —Y (=150 - (55)
(o) T,
and w,, is negative. The formula insures exact conservation of mass (assume
F, = 0), a property which is retained after the time derivatives are differenced.

We can prove conservation of energy for the spatial difference scheme. We first
need two identities. Define an operator D by

Dby — %V ( L) )( P+ %‘) lﬁmzs/io w,

2 \ 2

Ly ( P —zr Yo ) ( Pm ;— Po ) S[’néﬂl’o Wy, - (56)

Ins
Then D(y) = (%/2) D(1) + D(s). We also need
Y {3uinGu(oi) + 3unGo(eh) + @aD(1)} 445, = 0. (57)
ik

Here the sum is over the entire mesh.
Now if we let

K=Y 3. + v5) o 445 (58)
ik
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and

2k
we can show by use of the finite difference equations and the above identities that

_C(LKI_Q_ — 0. (50

ot :

(We have assumed that F, = F, = F, = 0.}
Thus this schele is “quasi-conservative” of energy. By this we mean thal energy

is conserved by the system of ordinary differential equations obtained wher we

difference the equations in space but not in time. After we difference in time the
scheme is no longer conservative. It it were conservative, we would have an

unconditionaily stable explicil scheme for a hyperbolic system. In most cases ihis

7 v wwirvea s [FIOFFTOFTTON

To obtain the full finite difference scheme of Kurihara we use centered differences
for the time derivatives.

ot = @it —24tD(1) +~ D (6.}
n R4t " 1 i \2 L p
-'U&ﬂ%l/ = Uy, 'PJML 2 At{D(ujy) + CiLGI\(%{QD::}J-)—,,)} -+ 2 At(maly, - )
n+l o nwl n—1 .
- N A "f it T Uin Pin S
s [ffl’jk%k +d — <) ( 2 > i ” + Dy, {62}

n—1_i—% 4 —1 - |
o ‘f,-'lk = U CFJ"ILI—__?AIID(UN - GG o] )); “ZAWHAM,«AT £

L

n—1_ -1 n—1
: Uk P T l i R
(1 . E])( ik Pl ”]] ¢J }

1
2 P

o

. V13 n '
X [efl’fkﬂf‘ﬂc -

The diffusion terms are denoted by D, , D., and D, and are described below. The
parameter €, (0 < ¢, << 1) was usually set to zero. The diffusion terms are based
on the DuFort-Frankl representation of' the Lapiacian; that is, we approximaie
V2§ by

LIns

| =1
vz?jj” Z to, | l,/J a1 —‘.-@L P - | W, | l,[J,
' A cos B, T i A0 S = 2 AM cos
EW
1 Wy, l ni—1 i Wiy 1 ’7}71+1 — ‘ Wy l sricl A
- Z /’ - 0 - Z 3 - }.4 lpn ‘ 'e {{34\;
249 24X, cos 8, 249 ’
Lpw k k Lns
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This is based on the form of the Laplacian

b2 (cos g Cﬁ—lg)

1 o 1 cb
Vi = cos? 8 8/\sg cos 8 a0 (65)
Then D, , D, , and D, are defined by the differenced versions of
D, = 2 AtC, V¥ ug), (66)
» = 2 AtC;V¥(vg), 67)
D, = 2 4iC V¥ p). (68)

DELT:
DELX:
DIFDFN:
DIFFUSN:

DIFST2:
EPSDFN:
EPSST2:
JCASE:
JINT:
IMAX:

MASS(MIN-MAX):

NDFN:

NIJTOT:

GLOSSARY

A4t in seconds.

Adx = 4dA cos 8.

DuFort-Frankl diffusion coeflicient in m?/sec.

Multiplier to vary diffusion near the pole. The diffusion
coefficient o is maltiplied by a parameter #(6) where m(f) = 1
near the equator and may increase toward the pole. The
function m(f) = DIFFUSN is plotted with a dashed line in
the upper right-hand graph. The maximum vaiue of
DIFFUSN is printed at the top of the graph.

Similar to DIFDFN, except for two-step diffusion.
Diffusion multiplier for ¢ field for DuFort-Frankl case.
Similar to EPSDFN, except for two-step diffusion.
Identifies the experiment.

IMAX-2.

Number of mesh points from pole to equator, 40 =
7/(2*(JMAX-2)) for centered, 46 = 7/(2*JMAX-3) for
Kurihara.

This is the relative loss or gain in mass at the end of the run
(i.e., the mass at the end divided by the mass at the start).
The mass is defined by 3;; @;; 44, 44 = 4 AA cos 0 sin 46.
Interval between application of DuFort-Frankl diffusion.
Every NDFN time steps a DuFort-Frankl type diffusion
(see Section 4) is applied to the » and » equations with
diffusion coefficient ¢ = DIFDFN in m?/sec.; the value of
o used in the equation for the height field ¢ is
EPSDFN*DIFDFN.

Total number of mesh points in the region 0 < 6 < 7/2,
o< AL .
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NST2: Similar to NDFN, except when two-step type of diffusion s

used. See Section 2.B.

TYPE: The variation of the mesh near the pole is handled in: one 0{

two ways determined by the parameter TYPE. I TYPE =

then as the pole is approached fewer mesh points are plac ic’
on a latitude circle (i.e.. a circle defined by = constanil
Thus the value 4) increases and Ax = dAcos § does not
become too small. The solid lire in the top graph shows
DELX = x as a function of latitude & (the values of «x are
normalized to one). If TYPE = 2, then the same aumber
of mesh points are placed on each latitude circle; however.
the east-west derivatives are deiermined by an interpolation
scheme which increases the =ffective "alue of /_"ix Th 21 5.

u(/\ -+ A\') and approx1mate fu/m by (g — uW}/(z Jx \.vhw,

Ax = (k + o) AN with 0 < x < 1. In those cases whan
TYPE = 2 the value of DELX, as plotted with a solid cui
in the upper right-hand graph. is defined by the aboue
equation. The maximum value of DELX is printed ar the
top of the graph.

(43

C, Diffusion term, see Section 1, paragraph 2.
Cuo Diffusion term, see Section 1, paragraph 2.
o Corlolis normalization. see Section 1, paragraph 2.
C, Normalization for pressure gradient term, see Section 1,
paragraph 2.
o Geopotential.
u East-west velocity.
7 North-south velocity.
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